If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60y^2+290y-50=0
a = 60; b = 290; c = -50;
Δ = b2-4ac
Δ = 2902-4·60·(-50)
Δ = 96100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{96100}=310$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(290)-310}{2*60}=\frac{-600}{120} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(290)+310}{2*60}=\frac{20}{120} =1/6 $
| 3n+12=47 | | -3x+7-3x-3=-2x+7 | | 10.5=2n-3 | | 24+5y-1=17y-9-4y | | 12(2k+10)=8(3k+15) | | 3(x+3)-2=2x+2(x-2) | | k-1(1/5)=12 | | -3x+3+8(x-3)=x+7 | | -6(a+8)=-66 | | 2x+x+38=119 | | 9=+7m+1-6 | | (2z+2)(z5−3)+6=0 | | 4-3x-12=2x-9-5x+1 | | 12x-18=138 | | Y+4=10y= | | 10x+4-8=(2x-1) | | 15+3m=17 | | 8(y+1)=-2y-12 | | -9(b-12=9) | | 8(y+1)=2y-12 | | 5n+35=15 | | 6(x+7)=35-x | | 6x+3-2x-2=1/4(2x+8) | | 6x+3-2x-2=1/4(2x+4) | | 10=14+4(9+q) | | 6x+3-2x-2=1/4(2x+6) | | 9x-18+10x-12=180 | | 6x+3-2x-2=1/4(2x+2) | | 2t+13=35 | | 2n+10=-4 | | 13x+x=500 | | 5x-7x=-2x |